Sequences and Limits

A sequence (Xn) of real numbers is said to be
$$
x
$$
.)
\n1) bounded above y and $x \in \mathbb{R}$ s.t. $x_n \le u$ $\forall n \in \mathbb{N}$;
\nii) bounded below y and $x \in \mathbb{R}$ s.t. $1 \le x_n$ $\forall n \in \mathbb{N}$
\niii) bounded by both $(x + 1)$, xy and $y \notin \mathbb{R}$
\n $\alpha \in \mathbb{R}$ s.t. $|x_m| \le \alpha$ $\forall n \in \mathbb{N}$ (where
\n $|x| = \begin{cases} x & x \ne 0 \\ x & x = 0 \\ -x & xy \ne 0 \end{cases}$
\n(iv) increasing y and $x \in \mathbb{N}$ $\forall n \in \mathbb{N}$ (whence
\n(v) $\forall x \in \mathbb{N}$ and $x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n(v) $\forall x \in \mathbb{N}$ and $x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n(v) convergent y and $x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ and $x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ and $x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ and $\forall x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ and $\forall x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ and $\forall x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ and $\forall x \in \mathbb{N}$ for $x \in \mathbb{N}$
\n $\forall x \in \mathbb{N}$ for $x \in \mathbb{N}$ for <

Exwives.

\n1. Stute the unignerness remark in (vi). Hint:
$$
m
$$
 the wave of the "Make life Easire Lemma": m the n the "Make life Easire Lemma": T_{\uparrow} $v \in \mathbb{R}$ is $s \in \mathbb{N}$ (v1) $\leq \mathbb{N}$ (l1) $s \in \mathbb{N}$ (l2) $s \in \mathbb{N}$ (l3) $s \in \mathbb{N}$ (l4) $s \in \mathbb{N}$ (l5) $s \in \mathbb{N}$ (l7) $\leq \mathbb{N}$ (l8) $s \in \mathbb{N}$ (l9) $s \in \mathbb{N}$ (l1) $\leq \mathbb{N}$ (l1) $\leq \mathbb{N}$ (l2) $s \in \mathbb{N}$ (l3) $s \in \mathbb{N}$ (l4) $s \in \mathbb{N}$ (l5) $s \in \mathbb{N}$ (l6) $s \in \mathbb{N}$ (l7) $\leq \mathbb{N}$ (l8) $s \in \mathbb{N}$ (l9) $s \in \mathbb{N}$ (l10) $s \in \mathbb{N}$ (l11) $s \in \mathbb{N}$ (l10) $s \in \mathbb{N}$ (l11) $s \in \mathbb{N}$ (l12) $s \in \mathbb{N}$ (l13) $s \in \mathbb{N}$ (l14) $s \in \mathbb{N}$ (l15) $s \in \mathbb{N}$ (l19) $s \in \mathbb{N}$ (l10) $s \in \mathbb{N}$ (l11) $s \in \mathbb{N}$ (l

\n- \n
$$
V(1) \Rightarrow (VI) \quad (I \neq I \text{ also true but } \text{the } |V \circ \circ f \text{ is not } \text{easy} \text{ at } \text{this stage.})
$$
\n
\n- \n $V(1) \Rightarrow (U) \text{ is not } \text{easy} \text{ at } \text{this stage.})$ \n
\n- \n $V(1) \Rightarrow (U) \text{ is not } \text{easy} \text{ is not } \text{this stage.})$ \n
\n- \n $V(1) \Rightarrow (U) \text{ is not } \text{new} \text{ is not } \text$

Results given in
$$
Ex
$$
 s, 6 are usually
\nreduced to a 5 the Monotone Convergence/heorem.

\nThus we have many
\n $Im X_1$, (computation programs) . Let c ER
\n $lim X_1 = x + lim yn = y$ (in IR) .

\nThen (in $Im X_1 = x$ if $lim yn = y$ (in IR) .

\nThus (in $Im X_1 = cx$) = (in $Im X_1$ if $lim yn$)

\n(ii) $lim (Im X_1) = xy$ (modmut rule")

\n(iii) $lim (Im X_1) = xy$ provided $AnnX$

\n(iv) $lim (Im X_1) = x$ if $lim (lim Y_1) = x$

\n(v) $lim (Im X_1) = x$ if $lim (lim Y_1) = x$

\n(vi) $lim (lim Y_1) = x$ if $lim X_1 = x$

\n(v) $lim (lim Y_1) = x$ if $lim X_1 = x$

\n(vi) $lim (lim Y_1) = x$ if $lim X_1 = x$

\n(vii) $lim (lim Y_1) = x$ if $lim X_1 = x$

\n(viii) $lim X_1 = x$ if $lim X_1 = x$ if $lim X_1 = x$

\nThus, $lim X_1 = x$ if $lim X_1 = x$

\n(viii) If $lim X_1 = x$ if $lim X_1 = x$

\n(ix) If $lim X_1 = x$ if $lim X_1 = x$

\n(ix) If $lim X_1 = x$ if $lim X_1 = x$

\n(ix) If $lim X_1 = x$ if $lim X_1 = x$

\n(ix) If $lim X_1 = x$ if $lim X_1 = x$

\n(ix) If $lim X_1 = x$ if $lim X_1 = x$

\n(ix) If $lim X_1 = x$

Proof. (i) Can assume that
$$
et{0}
$$
 (x) $td>0$).
\nLet 270 . Then $l_{(c)}$ is positive and corresponding
\n 3 $N \in \mathbb{N}$ s.t. $|X_{n}-x| < \frac{1}{|C|}$ $W \ge N$. Hence
\n $|cx_{n}-cx| = |ct \cdot |x_{n}-x| < t \in \frac{2}{|C|} = \epsilon$ $W \ge N$.
\n(ii) Let 270 . Thus, for the positive number $C_{1}^{-\frac{6}{2}}$,
\n $|x_{n}-x| < z_{1}$ 3 N_{1} , $N_{2} \in \mathbb{N}$ s.t.
\n $|x_{n}-y| < z_{2}$ $W \ge N_{2}$.
\n $|x_{n}-y| < z_{2}$ $W \ge N_{2}$.
\nTake $N = max\{N_{1}, N_{2}\}$. Then, $W \ge N_{2}$ one has
\n $|x_{n}-x| < z_{1} + |y_{n}-y| < z_{2}$ and so
\n $|x_{n}+y_{n}\rangle - |x+y_{2}| < \epsilon_{1}+2z_{2} = \epsilon$.
\nThe $|y_{0}+y_{1}-x_{1}-y_{1}|$ is similar
\n(iii) By k_{1} , 3 m_{2} or such that $|x_{1}, y_{n}|$
\n $|y_{1}, |y_{n}|$ (and $n \in \mathbb{N}$) and all bounded by the
\nsame M . Let 270 . With $\epsilon_{1}:=\frac{\epsilon}{2N}$
\n $|x_{n}-y| < z_{1}$ $W \ge N_{2}$.
\n $|x_{n}-y| < z_{2}$ $W \ge N_{2}$.
\n $|x_{n}-y| < z_{2}$ $W \ge N_{2}$.

Let
$$
N = max\{N_1, N_2\}
$$
. Then $N_1 \ge N_2$
\non- $100 \times 10^{-1} < \frac{2}{20} + 190 - 90 < \frac{2}{20} \approx 0$
\n $|X_n y_n - xy| = |X_n y_n - xy| + xy_n - xy|$
\n $\le |X_n - x| \cdot |y_n| + |x| |y_n - y|$
\n $\le |X_n - x| + |y_n| + |x| |y_n - y|$
\n $\le M |x_n - x| + M |y_n - y| < M \cdot \epsilon_1 + M \epsilon_2 = \epsilon$
\nRemark. You may also do an follows:
\n $By Q.7$ (uply to the convergence sequence)
\n $|X_n - x| < \frac{\epsilon}{2N}$ $|Y_n \ge N_1$
\n $|y_n - y| < \frac{\epsilon}{2(N-1)}$ $|Y_n \ge N_2$
\n $|y_n - y| < \frac{\epsilon}{2(N+1)}$ $|Y_n \ge N_1$
\nLet $N = N_1 \vee N_2$. Then $|Y_n \ge N$ one has
\n $|X_n y_n - xy| \le M |x_n - x| + |x| \cdot \frac{\epsilon}{2(N+1)}$
\n $\le M \cdot \frac{\epsilon}{2M} + \frac{\epsilon}{2} = \epsilon$
\n(Hence of |x| + | value when |x| - xy is for
\nAnswer it to non-200 in the denominator).

Warning. But the following hypothesis, we can use the following equations:

\n
$$
\mathcal{E}_{1} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{2} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{3} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{4} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{5} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{6} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{7} = \frac{\mathcal{E}}{2(\mathcal{Y}_{n}+1)} \quad (>0)
$$
\n
$$
\mathcal{E}_{8} = \frac{\mathcal{E}_{9}}{\mathcal{E}_{1}} \quad (>0)
$$
\n
$$
\mathcal{E}_{1} = \frac{\mathcal{E}_{1}}{\mathcal{E}_{1}} \quad (>0)
$$
\n
$$
\mathcal{E}_{1} = \frac{\mathcal{E}_{2}}{\mathcal{E}_{1}} \quad (>0)
$$
\n
$$
\mathcal{E}_{1} = \frac{\mathcal{E}_{1}}{\mathcal{E}_{1}} \quad (>0)
$$
\n
$$
\mathcal{E}_{1} = \frac{\mathcal{E}_{2}}{\mathcal{E}_{1}} \quad (>0)
$$
\n
$$
\mathcal{E}_{1} = \frac{\mathcal{E}_{2}}{\mathcal{
$$

(iv). Express to show the special case
\n
$$
lim (\frac{1}{y_n}) = \frac{1}{y}
$$
\n(Ann the general cost follows by (iii) as
\n
$$
x_n|y_n = x_n \cdot \frac{1}{y_n}
$$
\nFor (f), not l and
\n
$$
lim \frac{1}{y_n} \cdot \frac{1}{y} = \frac{y - y_n}{y_n y} = \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n} - \frac{1}{y}\right) = \frac{1}{y_n} \cdot \frac{1}{y_n} = \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n} - \frac{1}{y}\right) = \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n}\right) \le \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n} - \frac{1}{y_n}\right) = \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n} - \frac{1}{y_n}\right) = \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n} - \frac{1}{y_n}\right) = \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n} \cdot \frac{1}{y_n}
$$
\n
$$
lim \left(\frac{1}{y_n} - \frac{1}{y_n}\right) = \frac{1}{y_n} \cdot \frac{
$$

\n N_{ov} , $l_t = 50$ and consider $E' = c y $ \n
\n $\begin{aligned}\n &\text{Line } l_{in}y_{n} = y, \exists N' \in \mathbb{N} \text{ s.t.} \\ &\text{Var } y_{n} = y, \exists N' \in \mathbb{N} \text{ s.t.} \\ &\text{Var } y & < z' = c y \in \mathbb{N} \text{ n} \geq N'.\n \end{aligned}$ \n
\n $\begin{aligned}\n &\text{Line } \mathbb{N} \text{ s.t.} \\ &\text{One } \mathbb{N} \text{ s.t.} \\ &\text{One$

and hang

$ x_1 - l < \epsilon$	$(x_1 - \epsilon < x_n < l + \epsilon)$	$V_n \ge N_1$	
$l \le k$	$(x_1 - \epsilon < l + \epsilon)$	$V_n \ge N_2$	
$l \le k$	$N = N_1 \vee N_2$	7ϵ	$\sqrt{2\epsilon}$
$l \le k$	$\sqrt{2\epsilon}$	$\sqrt{2\epsilon}$	
$l \le k$	$\sqrt{2\epsilon}$	$\sqrt{2\epsilon}$	
$l \le k$	$\sqrt{2\epsilon}$		
$l \le k$	$\sqrt{2\epsilon}$		
$l \le k$	$\sqrt{2\epsilon}$		
$l \le k$	$\sqrt{2\epsilon}$		
$l \le k$			
$l \le k$	$\sqrt{2\epsilon}$		
$l \le k$			

(1) Let
$$
\Sigma_i = \frac{y-x}{2} (>o)
$$
. Then J We-N s.t.
\n $x_n < x_1 + \frac{y-x}{2} = y - \frac{y-x}{2} < y_n$ Y n zN
\n(1) on should provide more details!)
\n
$$
\begin{aligned}\n\langle y_{01} \text{ should provide more details!})\rangle \\
\langle y_{02} \text{ (}X_1, X_2, X_3, \cdots)\\
\langle y_{k} \text{ is } (X_1, X_2, X_3, \cdots)\\
\langle y_{k} \text{ is } (X_1, X_2, X_3, \cdots)\\
\langle y_{k} \text{ is } (X_n) \text{ is a subsequence} \\
\langle y_{k} \text{ is } (X_n) \text{ is } (X_n) \text{ is a subsequence} \\
\langle y_{k} \text{ is } (X_n) \text{ is } (X_n)
$$

Subsequence of theorem.

\nAny subsegnime of a computant sequence
$$
(x_n)
$$

\nconverges (ts the same limit, as that of (x_n))

\nIf $(x_n, y_n) \in \mathbb{R}$

\nThus, $(e^x, \frac{e^{x+1}}{1}) = \lim_{x \to \infty} \left(\frac{2 + \frac{1}{x}}{x_{n-1}} \right) = \frac{2 + 0}{1 + 0} = 2$

\n2. $\lim_{x \to \infty} \left(\frac{2x}{n^2 + 1} \right) = \lim_{x \to \infty} \left(\frac{x^{n-1}x}{n^2 + 1^2} \right) = \frac{0}{1 + 0} = 0$

\n3. $\lim_{x \to \infty} \left(\frac{sinh}{n} \right) = 0$ because $\left(\frac{sinh}{n} \right) = \frac{0}{1 + 0} = 0$

\n4. $\lim_{x \to \infty} \frac{x}{2} = 0$ becomes $\left(\frac{sinh}{2} \right) \leq \frac{4}{n} \Rightarrow 0$ for $1 \Rightarrow x$.

\n4. $\lim_{x \to \infty} \frac{x}{2} = 0$ becomes $\left(\frac{sinh}{2} \right) = 0$ and $\lim_{(+1)^n} \frac{1}{2!} = 0$ for $1 \Rightarrow x$.

\n5. Similarly, $\lim_{x \to \infty} \frac{1}{2^n} = 0$ for $1 \Rightarrow x$ is not a $1 \Rightarrow x$.

\n6. Let $0 < r < 1$. Thus, $x^2 = 0$ for $1 \Rightarrow x$ is 0 .

\n6. Let $0 < r < 1$. Thus, $x^2 = 0$ for $1 \Rightarrow x$ is 0 .

\n6. Let $0 < r < 1$. Thus, $x^2 = 0$ for $1 \Rightarrow x$ is 0 .

\n7. If (x_1) is a positive *ne* and *0* is x is <

8. If
$$
(\pi)
$$
 is a positive aeg method and
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1 < 1
$$
\nThen $\lim_{n \to \infty} x_n = 0$
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < c \quad \forall n \ge N
$$
\nApply ∞ 7 to π and (x_0, x_{N+1}, \cdot)
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < c \quad \forall n \ge N
$$
\nApply ∞ 7 to π and (x_0, x_{N+1}, \cdot)
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 0
$$
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 0
$$
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n}
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n}
\n
$$
\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < \lim_{n \to \infty} \frac{x_{n+1}}{x_n}
\n
$$
\lim_{n \to \infty} \frac
$$
$$
$$
$$
$$
$$
$$
$$
$$

Two case its he considered : Eithov
\nSince aveo, including many peak terms
\n(1) infinite many peak terms:
\n
$$
Mewe and finally many peaks we J\n
$$
M \in \mathbb{N}
$$
 and x_n is many peaks we J
\n
$$
M \in \mathbb{N}
$$
 as x_n is the last
\n x_n is not predicted, \exists $m_2 > n_1$ s.t.
\n
$$
x_n > x_{n_1}
$$

\n
$$
x_{n_2} > x_{n_2}
$$

\n
$$
x_{n_3} > x_{n_2}
$$
 (z_{n_1})
\n
$$
x_{n_1} > x_{n_2}
$$
 (z_{n_1})
\n
$$
x_{n_1} > x_{n_1}
$$
 If we have
$$
x_{n_k}
$$
 will be a
\n
$$
x_{n_{k+1}} > x_{n_{k+1}}
$$

\n
$$
x_{n_{k+1}} > x_{n_{k+1}}
$$

\n
$$
x_{n_{k+1}} > x_{n_{k+1}}
$$

\nThus (x_{n_k}) is a (savity) in we using subset y
\n
$$
x_{n_{k+1}} > x_{n_{k+1}}
$$

\n<
$$

a decreroing subsequence of (xn).
M (Canchy (vilevion). A seg (xn) converges (to a limit in R) iff it Proof Sine =>"part dready done (χ_n) is Coupy. Then it is bounded (β) . Supply a MOSL) and hence it Theorem that it has a convergent subsequence, say lim $X_n = \sum_{k=1}^{n} k_k R_k$ $250.$ Then $JKEN$ s.L $\left(\begin{array}{c} 1 \end{array}\right)$ $| x_{n_k} - x | < \frac{\varepsilon}{2}$ \forall $k \geq \left| < \right|$ and d so \exists \forall \in \mathcal{N} s. t (2) $|\mathcal{X}_n - \mathcal{X}_m| < \frac{\varepsilon}{2}$ $\forall m, n \ge N$ Take $\kappa \in \mathbb{N}$ s.L $\kappa \geq K$, \mathbb{N} $\left(\text{so } n_{\kappa} \geq N\right)$ Thin

 $|\mathcal{X}_{n_{12}}-x|<\frac{2}{2}$ 4 $|\mathcal{X}_{n}-\mathcal{X}_{n_{12}}|<\frac{2}{2}$ $\tan\frac{1}{2}N$ and it follows from the triangle meggetity that $|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \sum_{k=1}^{k} \frac{1}{k} \le k \le k$ u_{n+1} in $u_{n} = x$